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Question 1

To be able to display realistic images, our display devices need to be
able to produce every frequency in the visible light spectrum.

True or false? Why? What are the advantages and disadvantages?
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Three-ColorTheory

To be realistic to human⇒ To be compatible with human visual system (L01, slide 35)
• Rods: Monochromatic
• Cones: Color sensitive to wavelengths

◦ Long≈ red
◦ Medium≈ green
◦ Short≈ blue

Proportion of the three gives us the sensation of different colors.
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Cone sensitivity and Additive color theory

Single frequency = proportion of responses of each cone.
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Additive Color Display Pros

1. We don’t have to produce light of every wavelength in vis. light
spectrum for realism

2. We can see colors that areNOT on vis. light spectrum (e.g.
PURPLE).

◦ Visible colors are different combinations of amount of activity in
RGB cones

◦ Purple is not a specific wavelength but a combination of red and
blue wavelengths (unlike violet which has its own wavelength)
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Additive Color Display Cons

Two different RGB values can produce the same color.

Q: What’s an example of this?

A:There is no definitive inversemapping of RGB to awavelength,
as it is display dependent.
https://physics.stackexchange.com/questions/248139/can- two- different- rgb- color- triplets- give- the- same- color

https://physics.stackexchange.com/questions/248139/can-two-different-rgb-color-triplets-give-the-same-color
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Question 2

Each pixel in a frame-buffer has 8 bits for each of the R, G and B
channels. Howmany different colors can each pixel represent? Is this
enough?

8 bits per channel (R, G, B): 224 = 16,777,216 colors.
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32-bit color

In most graphical applications today, we have 4 channels:
• R
• G
• B
• (not included in this question) A for Alpha (transparency)

Hence color has 32 bits: 232 values (can be represented with an int)!
On color depth: https://computer.howstuffworks.com/monitor4.htm

https://computer.howstuffworks.com/monitor4.htm
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32-bit color Is this enough?

256 shades of gray: banding artifacts.

Use case decides if this is undesirable or not.
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8-bit representation of color
On some systems, each pixel has only 8 bits (for all R, G, and B
combined). How would you allocate the bits to the R, G and B
primaries?
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8-bit representation of color

On some systems, each pixel has only 8 bits (for all R, G, and B
combined). How would you allocate the bits to the R, G and B
primaries?

3:3:2 for R:G:B. Our eyes are less sensitive to changes in blue,
as you can see from the normalized cone response for high fre-
quencies.
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Question 3

Referring to Lecture 1 Slide 31. If an imaginary image plane is d unit
distance in front of the pinhole camera, what are the coordinates of
the projection (on the imaginary image plane) of the 3D point (x, y, z)?
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Similar triangles

AE
AD

=
AF
AG

=
EF
DG
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Perspective

Notice thatOPZ andOP ′Z ′ are similar triangles as their internal
angles are identical.

x
x ′

=
y
y ′

=
z
z ′
and by definition z ′ = d
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Question 4

Why do we need a primitive assembly stage in the rendering pipeline
architecture?

Primitive: One polygonal unit
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Primitive Assembly Rendering pipeline
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Question 5

What does the rasterization stage (rasterizer) do in the rendering
pipeline architecture?
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Question 5

Describe what it does to a triangle that is supposed to be filled, and the
three vertices have different color. Assume smooth shading is turned
on.
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Rasterization Rendering pipeline

(Lecture 1 Slide 40)
Assigning colors to pixels occupied by a primitive/polygon.
1. Each vertex has an attribute.
2. Each attribute is interpolated across the vertices.
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Rasterization

Which attributes can be interpolated?
• Position
• Colour
• Normals
• UV coordinates
• Anything else that vertices may describe

Interpolation methods include:
• Barycentric interpolation
• Scanline algorithms (don’t worry about this till week 6)

https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/barycentric-coordinates.html
https://en.wikipedia.org/wiki/Scanline_rendering


Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

Question 6

What is hidden-surface removal? When is it not necessary?
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Hidden Surface Removal
After rasterization: we can have multiple fragments with the same
pixel coordinates.

The correct fragments to render are those that are closest to the
camera at the same pixel coordinates.
We should discard or overwrite entire hidden surfaces/fragments.
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Hidden Surface Removal

Hence if
1. we have no overlapping surfaces, or
2. we are already rendering from back to front

then we don’t need hidden surface removal.

HSR also has the added benefit of reducing rendering workload
(remove pixels/whole surfaces from rendering pipeline).
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Some hidden surface removal techniques

https://gabrielgambetta.com/computer-graphics-from-scratch/12-hidden-surface-removal.html
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Question 7

Which of the two following program fragments is more efficient? Why?

Can the same optimization be done for the case of GL_POLYGON?
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Calls to glBegin and glEnd

Note that OpenGL (together with mosts other graphics engines) is a
statemachine. Method B greatly reduces the number of state changes.
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What about GL_POLYGON?

We can’t do this with GL_POLYGON or we’ll be defining one massive
3N-vertex polygon.
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WebGL State Machine visualizer/debugger tool

https://webglfundamentals.org/webgl/lessons/resources/webgl-state-diagram.html
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Question 8

OpenGL supports the GL_TRIANGLES primitive type. Why do you
think that OpenGL also supports GL_TRIANGLE_FAN and
GL_TRIANGLE_STRIP?
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Comparison

Type Vertices Triangles
GL_TRIANGLES 3n n

GL_TRIANGLE_FAN n + 2 n
GL_TRIANGLE_STRIP n + 2 n
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Question 9

Devise a test to check whether a polygon in 3D space is planar.
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Method from Tutorial answer

1. For each vertex, take the cross product of its two neighbouring
edges.

2. Normalize the cross product.
3. Identify if all the cross products of each vertex are the same.

Slow because cross product computation is expensive.
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Improvedmethod

Note that a plane can be defined by the following equation:

n · (p− p0) = 0

where n is the normal of the plane.

This is because dot product of two vectors is zero if and only if they are
perpendicular!
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Improvedmethod

Hence let’s set the normal of this polygon to be (v1 − v2)× (v3 − v2).
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ImprovedMethod

For each of the vertices vi ∈ {v1, v2, v3, . . . , vn}, if

n · (vi − v2) = 0

then the polygon is planar.

Cross product involves more operations than dot product, so
dot product is more efficient to compute. Asymptotically the
runtime is still the same (O(n)).
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Summary
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Question 10

Devise a test to check whether a polygon on the x-y plane is convex.
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What is a convex polygon

Convex polygon is a polygon that is identical to its convex hull.

If you choose any two points on the boundary of a convex polygon and
draw a line between, the line should be entirely contained within the
polygon.
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Method from Tutorial answer

Iterating through i = 0 to n− 1 where there are n vertices, find each

ni = ∥(vi−1 − vi)× (vi+1 − vi)∥

if at least one ni is not identical to the rest, then polygon is
non-convex.
Note: I’m omitting that you have to take the x mod n of each of the vx here for conciseness.
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Example of failing convex test

ni = ∥(vi−1 − vi)× (vi+1 − vi)∥
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Cross product Right hand rule



Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

What about inner angles?
One property of convex polygons: all interior angles< 180◦

Checking this is tricky as the dot product of the vectors v4 − v5 and
v1 − v5 gives you cosα, not the cosine of the interior angle 2π− α.
One way would be to compute the cross product, which we would have
done so using the other method anyway.



Thanks! Get the slides here.
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https://trxe.github.io/cs3241-notes

https://trxe.github.io/cs3241-notes
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