
Tutorial 1
CS3241 Computer Graphics (AY23/24)

September 1, 2023

Wong Pei Xian
e0389023@u.nus.edu

mailto:e0389023@u.nus.edu

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

Question 1

To be able to display realistic images, our display devices need to be
able to produce every frequency in the visible light spectrum.

True or false? Why? What are the advantages and disadvantages?

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

Three-ColorTheory

To be realistic to human⇒ To be compatible with human visual system (L01, slide 35)
• Rods: Monochromatic
• Cones: Color sensitive to wavelengths

◦ Long≈ red
◦ Medium≈ green
◦ Short≈ blue

Proportion of the three gives us the sensation of different colors.

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

Cone sensitivity and Additive color theory

Single frequency = proportion of responses of each cone.

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

Additive Color Display Pros

1. We don’t have to produce light of every wavelength in vis. light
spectrum for realism

2. We can see colors that areNOT on vis. light spectrum (e.g.
PURPLE).

◦ Visible colors are different combinations of amount of activity in
RGB cones

◦ Purple is not a specific wavelength but a combination of red and
blue wavelengths (unlike violet which has its own wavelength)

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

Additive Color Display Cons

Two different RGB values can produce the same color.

Q: What’s an example of this?

A:There is no definitive inversemapping of RGB to awavelength,
as it is display dependent.
https://physics.stackexchange.com/questions/248139/can- two- different- rgb- color- triplets- give- the- same- color

https://physics.stackexchange.com/questions/248139/can-two-different-rgb-color-triplets-give-the-same-color

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

Question 2

Each pixel in a frame-buffer has 8 bits for each of the R, G and B
channels. Howmany different colors can each pixel represent? Is this
enough?

8 bits per channel (R, G, B): 224 = 16,777,216 colors.

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

32-bit color

In most graphical applications today, we have 4 channels:
• R
• G
• B
• (not included in this question) A for Alpha (transparency)

Hence color has 32 bits: 232 values (can be represented with an int)!
On color depth: https://computer.howstuffworks.com/monitor4.htm

https://computer.howstuffworks.com/monitor4.htm

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

32-bit color Is this enough?

256 shades of gray: banding artifacts.

Use case decides if this is undesirable or not.

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

8-bit representation of color
On some systems, each pixel has only 8 bits (for all R, G, and B
combined). How would you allocate the bits to the R, G and B
primaries?

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

8-bit representation of color

On some systems, each pixel has only 8 bits (for all R, G, and B
combined). How would you allocate the bits to the R, G and B
primaries?

3:3:2 for R:G:B. Our eyes are less sensitive to changes in blue,
as you can see from the normalized cone response for high fre-
quencies.

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

Question 3

Referring to Lecture 1 Slide 31. If an imaginary image plane is d unit
distance in front of the pinhole camera, what are the coordinates of
the projection (on the imaginary image plane) of the 3D point (x, y, z)?

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

Similar triangles

AE
AD

=
AF
AG

=
EF
DG

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

Perspective

Notice thatOPZ andOP ′Z ′ are similar triangles as their internal
angles are identical.

x
x ′

=
y
y ′

=
z
z ′
and by definition z ′ = d

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

Question 4

Why do we need a primitive assembly stage in the rendering pipeline
architecture?

Primitive: One polygonal unit

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

Primitive Assembly Rendering pipeline

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

Question 5

What does the rasterization stage (rasterizer) do in the rendering
pipeline architecture?

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

Question 5

Describe what it does to a triangle that is supposed to be filled, and the
three vertices have different color. Assume smooth shading is turned
on.

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

Rasterization Rendering pipeline

(Lecture 1 Slide 40)
Assigning colors to pixels occupied by a primitive/polygon.
1. Each vertex has an attribute.
2. Each attribute is interpolated across the vertices.

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

Rasterization

Which attributes can be interpolated?
• Position
• Colour
• Normals
• UV coordinates
• Anything else that vertices may describe

Interpolation methods include:
• Barycentric interpolation
• Scanline algorithms (don’t worry about this till week 6)

https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/barycentric-coordinates.html
https://en.wikipedia.org/wiki/Scanline_rendering

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

Question 6

What is hidden-surface removal? When is it not necessary?

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

Hidden Surface Removal
After rasterization: we can have multiple fragments with the same
pixel coordinates.

The correct fragments to render are those that are closest to the
camera at the same pixel coordinates.
We should discard or overwrite entire hidden surfaces/fragments.

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

Hidden Surface Removal

Hence if
1. we have no overlapping surfaces, or
2. we are already rendering from back to front

then we don’t need hidden surface removal.

HSR also has the added benefit of reducing rendering workload
(remove pixels/whole surfaces from rendering pipeline).

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

Some hidden surface removal techniques

https://gabrielgambetta.com/computer-graphics-from-scratch/12-hidden-surface-removal.html

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

Question 7

Which of the two following program fragments is more efficient? Why?

Can the same optimization be done for the case of GL_POLYGON?

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

Calls to glBegin and glEnd

Note that OpenGL (together with mosts other graphics engines) is a
statemachine. Method B greatly reduces the number of state changes.

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

What about GL_POLYGON?

We can’t do this with GL_POLYGON or we’ll be defining one massive
3N-vertex polygon.

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

WebGL State Machine visualizer/debugger tool

https://webglfundamentals.org/webgl/lessons/resources/webgl-state-diagram.html

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

Question 8

OpenGL supports the GL_TRIANGLES primitive type. Why do you
think that OpenGL also supports GL_TRIANGLE_FAN and
GL_TRIANGLE_STRIP?

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

Comparison

Type Vertices Triangles
GL_TRIANGLES 3n n

GL_TRIANGLE_FAN n + 2 n
GL_TRIANGLE_STRIP n + 2 n

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

Question 9

Devise a test to check whether a polygon in 3D space is planar.

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

Method from Tutorial answer

1. For each vertex, take the cross product of its two neighbouring
edges.

2. Normalize the cross product.
3. Identify if all the cross products of each vertex are the same.

Slow because cross product computation is expensive.

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

Improvedmethod

Note that a plane can be defined by the following equation:

n · (p− p0) = 0

where n is the normal of the plane.

This is because dot product of two vectors is zero if and only if they are
perpendicular!

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

Improvedmethod

Hence let’s set the normal of this polygon to be (v1 − v2)× (v3 − v2).

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

ImprovedMethod

For each of the vertices vi ∈ {v1, v2, v3, . . . , vn}, if

n · (vi − v2) = 0

then the polygon is planar.

Cross product involves more operations than dot product, so
dot product is more efficient to compute. Asymptotically the
runtime is still the same (O(n)).

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

Summary

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

Question 10

Devise a test to check whether a polygon on the x-y plane is convex.

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

What is a convex polygon

Convex polygon is a polygon that is identical to its convex hull.

If you choose any two points on the boundary of a convex polygon and
draw a line between, the line should be entirely contained within the
polygon.

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

Method from Tutorial answer

Iterating through i = 0 to n− 1 where there are n vertices, find each

ni = ∥(vi−1 − vi)× (vi+1 − vi)∥

if at least one ni is not identical to the rest, then polygon is
non-convex.
Note: I’m omitting that you have to take the x mod n of each of the vx here for conciseness.

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

Example of failing convex test

ni = ∥(vi−1 − vi)× (vi+1 − vi)∥

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

Cross product Right hand rule

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

What about inner angles?
One property of convex polygons: all interior angles< 180◦

Checking this is tricky as the dot product of the vectors v4 − v5 and
v1 − v5 gives you cosα, not the cosine of the interior angle 2π− α.
One way would be to compute the cross product, which we would have
done so using the other method anyway.

Thanks! Get the slides here.

§

https://trxe.github.io/cs3241-notes

https://trxe.github.io/cs3241-notes

	Question 1
	Question 2
	Question 3
	Question 4
	Question 5
	Question 6
	Question 7
	Question 8
	Question 9
	Question 10
	

