
Tutorial 4
CS3241 Computer Graphics (AY23/24)

September 20, 2023

Wong Pei Xian
e0389023@u.nus.edu

mailto:e0389023@u.nus.edu

Lecture 5 Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9

Recap

Lecture 4:
• Matrices (translation, rotation, scale)
• Matrix stacks (Current TransformationMatrix or CTM)

Lecture 5:
• View transformation
• Projection
• GL_MODELVIEW and GL_PROJECTION in context of CTM

Lecture 5 Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9

Recap

Lecture 5 Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9

Question 1a

Referring to Lecture 1 Slide 31. If an imaginary image plane is d unit
distance in front of the pinhole camera, what are the coordinates of
the projection (on the imaginary image plane) of the 3D point (x, y, z)?

Lecture 5 Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9

Question 1a

x
x ′ =

y
y ′ =

z
z ′ and by definition z

′ = d

x ′ = dx
z y ′ = dy

z z ′ = d

To project simply scale the ray to hit the surface.

Lecture 5 Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9

Question 1b

In the above setup, the camera’s center of projection is conveniently
located at the origin of the “world” coordinate frame, and pointed in
the z direction. If the camera’s center of projection is not located at the
origin, and the camera is pointed in an arbitrary direction, the
calculation of the projection becomes very messy. Howwould you
make it less messy?

Lecture 5 Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9

Explanation

• Camera axes and world axes are not not equivalent

• The cone is represented in world space coordinates.

• We undo the transformation by translating everything by the camera’s
distance from the origin,

• and then rotating everything by the camera’s rotation.
• And now the camera axes and world axes are aligned.

Lecture 5 Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9

Q1b

Lecture 5 Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9

Q1b

Lecture 5 Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9

Question 1b

Reorient the worldwith respect to the camera’s rotation and
translation.

Visualization: https://imgur.com/a/sXuYgaM

https://imgur.com/a/sXuYgaM

Lecture 5 Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9

Question 2

Why do we want to perform view transformation?

Mview = RT

Lecture 5 Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9

Benefits

1. Can reorient camera position within the world without manually
changing all vertices’ coordinates.

2. Can perform perspective projection
◦ Why do we need perspective projection?

Lecture 5 Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9

Perspective projection matrix (simplified)

Mpv =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0



x
y
z
1

 =


x
y
z
z

→

x/z
y/z
1
1


HereMp is a basic projection matrix that simply projects any light ray
from the pinhole (eye) through the point onto a virtual plane, setting
up the homogenous coordinate such that perspective division scales
the resulting image into what would be captured at distance 1 from
eye.
The actual perspective division matrix is more complex as it must account for the
transformation to NDC space.

Lecture 5 Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9

Perspective projection matrix (simplified)

Lecture 5 Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9

Question 3

Explain the purpose of the “up-vector” provided to the gluLookAt()
function.

Lecture 5 Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9

To prevent the camera from ’rolling’

By defining the "up-vector we establish a vertical plane for the y and z
axes of the camera coordinates.

Lecture 5 Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9

Question 3b

Why does the “up-vector” not need to be perpendicular to the view
direction?

Lecture 5 Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9

We can derive our 3 axes as such:

As long as the up-vector is not parallel to the view direction and
is not zero vector, it already uniquely defines the y-axis of the
camera.

Lecture 5 Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9

We can derive our 3 axes as such:

Lecture 5 Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9

Question 4

Replace the following gluLookAt() function call with one or more
calls to glRotated() and glTranslated().
When using glRotated(), you are allowed to rotate about the x-axis,
y-axis and z-axis only.

gluLookAt(ex, ey, ez, ex, ey, ez+1, 0, -1, 0);

Lecture 5 Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9

Analysis of gluLookAt

eye = (ex, ey, ez)
at = (ex, ey, ez + 1)
eye - at = (0, 0,−1)
up = (0,−1, 0)

z axis: n = eye - at = (0, 0,−1) (camera looks in the -z direction!)
x axis: u = norm(up)× norm(n) = (1, 0, 0)
y axis: v=norm(n)×norm(u) = (0, 0,−1)×(1, 0, 0) = (0,−1, 0)
camera position = (ex, ey, ez)

Lecture 5 Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9

1. Translate the world towards camera: glTranslate(-ex, -ey,
-ez);

2. Rotate the world to align with camera:
◦ Notice that the camera z and y coordinates are flipped
zc = n = −(0, 0, 1) and yc = v = −(0, 1, 0)

◦ glRotated(180, 1, 0, 0)
◦ glRotated(180, 0, 1, 0); glRotated(180, 0, 0, 1);

Lecture 5 Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9

Question 5

A vertex, whose camera coordinates are (4, 6, -6), is being projected
using the following OpenGL orthographic projection:

glOrtho(-10, 10, -10, 10, 0, 8);

What will be the vertex’s Normalized Device Coordinates (NDC)?

Lecture 5 Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9

Coordinates through pipeline

Camera coordinates to NDC space:
1. If vertex is within the clipping region, it is mapped in NDC space
2. NDC space is scaled to a 2× 2× 2 volume

Lecture 5 Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9

Coordinate spaces: Orthographic Projection

Lecture 5 Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9

Coordinate spaces: Perspective Projection

Lecture 5 Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9

Orthographic projection

Lecture 5 Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9

Orthographic projection

glOrtho(l, r, b, t, n, f);

T = T(
−(10− 10)

2
,
−(10− 10)

2
,
8+ 0
2

)

= T(0, 0, 4)

S = S(
2

10− (−10)
,

2
10− (−10)

,
2

0− 8
)

= S(0.1, 0.1,−0.25)
Mv = ST(4, 6,−6)

= S(4, 6,−2)
= (0.4, 0.6, 0.5)

Lecture 5 Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9

Perspective ProjectionMatrix (full)

Lecture 5 Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9

Question 6

A rectangle has vertices A: (6, -4, -10), B: (14, -4, -10), C: (14, 8, -10), D:
(6, 8, -10) in the camera space.

Write a glFrustum function call to set up a view frustum that will
maximize the image size of the rectangle, and the entire rectangle
must appear in the image. The near and far plane distances should be
set as 5 and 15 respectively.

Lecture 5 Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9

glFrustum(3, 7, -2, 4, 5, 15);

Lecture 5 Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9

Question 7

A viewpoint at (vx, vy, vz) is looking at the center (cx, cy, cz) of a sphere
of radius R. Complete the following OpenGL program to set up a view
transformation and an orthographic projection so that the entire
sphere appears as big as possible in a square viewport.

Lecture 5 Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9

Visualization

Lecture 5 Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9

Code

Lecture 5 Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9

Question 8

Re-implement the gluPerspective() function by using the
glFrustum() function. You canmake use of the tangent function
tan(), which takes an angle parameter (in radians).

void gluPerspective(
double fovy, double aspect,
double near, double far) {

const double PI = 3.141592;
}

Lecture 5 Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9

Question 8

left =− h
2 , right =

h
2 , bottom =−w

2 , top =
w
2 .

Lecture 5 Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9

Let aspect ratio be a = w
h .

Let fovy be θ.

By trigonometry, h = 2 tan(θ2)× near.
By definition, w = ah.

Thanks! Get the slides here after the tutorial.

§

https://trxe.github.io/cs3241-notes

https://trxe.github.io/cs3241-notes

	Lecture 5
	Question 1
	Question 2
	Question 3
	Question 4
	Question 5
	Question 6
	Question 7
	Question 8
	Question 9

