
Tutorial 5
CS3241 Computer Graphics (AY23/24)

October 3, 2023

Wong Pei Xian
e0389023@u.nus.edu

mailto:e0389023@u.nus.edu

Lecture 6 Question 1 Question 2 Question 3 Question 4

Summary

• Clipping
◦ Cohen Sutherland (Line Clipping)
◦ Polygon Clipping
◦ Simple early acceptance/rejection

• Rasterization of Line Segments
◦ Digital Differential Analyzer
◦ Bressenham’s Algorithm

• Culling
◦ Painter’s Algorithm (Depth sorting)
◦ Back-face culling
◦ Image space (Ray-tracing, closest polygon per pixel)

Tutorial 5

Lecture 6 Question 1 Question 2 Question 3 Question 4

Question 1

Wewant to scan-convert (rasterize) the curve y = x2/100 from the
pixel locations (0, 0) to (200, 400). Assume there is a function
write_pixel(x, y, color) to set the color of a pixel at location
(x, y). The curve should be drawn as the thinnest possible but not
broken. Write a C program fragment to draw the curve.

You are allowed to use floating-point operations, the round() function, and
even the square-root function sqrt().

Lecture 6 Question 1 Question 2 Question 3 Question 4

Which algorithm?

Floating Point ops allowed→Digital Differential Analyzer

m =
dy
dx

=
ye − y0
xe − x0

Obtainm = dy
dx =

d
dx (x

2/100) = 50x.

Lecture 6 Question 1 Question 2 Question 3 Question 4

Do we actually need to y += m?

No. We already know the relationship between y and x.

for (int x = 0; x <= xe; x++)
int y = x*x /100;
write_pixel(x, y, color);

Lecture 6 Question 1 Question 2 Question 3 Question 4

Inherent problem in vanilla DDA

This is where them = dy
dx comes in handy! We use it to identify when to

swop roles of x and y.

Lecture 6 Question 1 Question 2 Question 3 Question 4

Solving this problem

We use it to identify when to swop roles of x and y.

m =
x
50

> 1⇒ x > 50

Lecture 6 Question 1 Question 2 Question 3 Question 4

Complete Solution

Lecture 6 Question 1 Question 2 Question 3 Question 4

Question 2

How do you scan convert a circle without using any floating-point
operations? Assume that the circle center has integer pixel coordinates
and its radius is an integer. Assume the entire circle is inside the
window. Complete the following program fragment.

You are allowed to use a few floating-point operations in the initialization or
setup.

Lecture 6 Question 1 Question 2 Question 3 Question 4

Question 2

Lecture 6 Question 1 Question 2 Question 3 Question 4

Which algorithm?

Floating Point opsNOT allowed→ Bresenham’s Algorithm
Hints in the code:

• x_max = (int) round(radius * cos45:
• 4 starting pixels: top bottom right left

Lecture 6 Question 1 Question 2 Question 3 Question 4

Pattern

Lecture 6 Question 1 Question 2 Question 3 Question 4

Bresenham’s algorithm

With x = 0 and y = r, we are starting at the top.

If we have just shaded the yellow pixel (cx + 0, cy +
radius), for cx+1 how do we know which pixel to shade?

Don’t try differentiating y2 + x2 = r2: even with assumptions on the
values of y and x it will get clunky and involve sqrtwhich is
prohibited.

Lecture 6 Question 1 Question 2 Question 3 Question 4

Bresenham’s Circle algorithm

We know that in a perfect circle, y2 + x2 − r2 = 0.
Hence for a given y, the closer the value of | y2 + x2 − r2 | to 0, the
closer it is to the perfect circle.

Observe the symmetry.

Lecture 6 Question 1 Question 2 Question 3 Question 4

Question 3a

What could be the problems with the rasterization of a very thin
triangle?

Lecture 6 Question 1 Question 2 Question 3 Question 4

In context of rasterization...

Themain problemwe’ve seen is this one:

Lecture 6 Question 1 Question 2 Question 3 Question 4

In context of rasterization...
Notice this would happen with thin triangles too.

Lecture 6 Question 1 Question 2 Question 3 Question 4

Question 3b

Would it still be a problem if the thin triangle is part of a triangle mesh?

No, all the spaces will be filled up.

Lecture 6 Question 1 Question 2 Question 3 Question 4

Question 4a

The following image shows the rendering of a green rectangle and a
red rectangle in 3D space. In the overlap area of the two rectangles,
there is some rendering artifact caused by z-fighting. What do you
think z-fighting is? What is the cause of z-fighting in this example?

Lecture 6 Question 1 Question 2 Question 3 Question 4

z-fighting

• 2 or more primitives have very similar distances to camera
• Near similar or identical values in the z-buffer.
• The fragment to rasterize is chosen randomly between the
fighting fragments.

Lecture 6 Question 1 Question 2 Question 3 Question 4

Question 4b

When you are setting up a view volume, what can you do to minimize
the chance of z-fighting?

i.e. how to reduce the likelihood of the primitives having identical values

Lecture 6 Question 1 Question 2 Question 3 Question 4

Minimizing z-fighting

Since z-buffer values have to be between [0, 1], the bottleneck (for the
number of possible z-buffer values) is the precision/bit count of the
floating point value (16, 32, or 64).
1. Increase the precision (number of bits) of z-buffer value.
2. Decrease the distance between the near and far plane (how is
z-buffer value calculated?)

◦ [near, far] 7→ [0, 1]
◦ range of possible values with same z-buffer value:

[near, (near− far)/(2N)]

Attendance taking

Thanks! Get the slides here after the tutorial.

§

https://trxe.github.io/cs3241-notes

https://trxe.github.io/cs3241-notes

	Lecture 6
	Question 1
	Question 2
	Question 3
	Question 4
	

